M ay 2 00 8 von Neumann Lattices in Finite Dimensions Hilbert spaces
نویسنده
چکیده
The prime number decomposition of a finite dimensional Hilbert space reflects itself in the representations that the space accommodates. The representations appear in conjugate pairs for factorization to two relative prime factors which can be viewed as two distinct degrees freedom. These, Schwinger’s quantum degrees of freedom, are uniquely related to a von Neumann lattices in the phase space that characterizes the Hilbert space and specifies the simultaneous definitions of both (modular) positions and (modular) momenta. The area in phase space for each quantum state in each of these quantum degrees of freedom, is shown to be exactly h, Planck’s constant. PACS: 03.67.Lx, 03.67. -a, 03.65.Ta
منابع مشابه
ar X iv : 0 81 1 . 04 21 v 1 [ qu an t - ph ] 4 N ov 2 00 8 QUANTUM ERROR CORRECTION ON INFINITE - DIMENSIONAL HILBERT SPACES
We present a generalization of quantum error correction to infinite-dimensional Hilbert spaces. The generalization yields new classes of quantum error correcting codes that have no finite-dimensional counterparts. The error correction theory we develop begins with a shift of focus from states to algebras of observables. Standard subspace codes and subsystem codes are seen as the special case of...
متن کامل0 60 50 20 v 1 5 M ay 2 00 6 Stone spectra of finite von Neumann algebras of type I n Hans
In this paper, we clarify the structure of the Stone spectrum of an arbitrary finite von Neumann algebra R of type In. The main tool for this investigation is a generalized notion of rank for projections in von Neumann algebras of this type.
متن کاملSubmajorization inequalities associated with $tau$-measurable operators
The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..
متن کاملComplementarity in categorical quantum mechanics
We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ defi...
متن کاملar X iv : m at h - ph / 0 40 50 60 v 1 2 5 M ay 2 00 4 ADJOINT FOR OPERATORS IN BANACH SPACES
In this paper we show that a result of Gross and Kuelbs, used to study Gaussian measures on Banach spaces, makes it possible to construct an adjoint for operators on separable Banach spaces. This result is used to extend well-known theorems of von Neumann and Lax. We also partially solve an open problem on the existence of a Markushevich basis with unit norm and prove that all closed densely de...
متن کامل